本文来源: 接地气的陈老师
347
一提起指标体系,很多同学像说相声一样,脱口而出“AARRR”“OSM”“UJM”……讲得好开心,可面试官多反驳一句:“我这是销售运营的指标体系!”“说清楚到底O是什么O,U是怎么U的!”就会让很多同学没了办法。今天系统讲解下,该如何处理此类问题。 和很多数据分析问题一样,OSM等理论本身没有问题。问题是不能把理论当教条,不深入业务流程之中,不考虑具体场景,是没法搭建出好用的指标体系的。 一、清晰业务场景 所谓的业务场景,即:数据指标要反映的业务是啥。 它包含了四个方面:
二、清晰业务目标 业务目标是业务最关心的东西,也决定了指标体系的主指标是啥。数据采集,得优先保证主指标有采集;指标体系的展开,也优先展示主指标的产生过程。 在业务方的心中,业务目标是很清晰的。因此可以直接沟通。 比如销售运营工作,常见的主指标有:
三、梳理业务流程 业务流程是主要数据来源,指标体系首要任务是反馈业务流程情况。有了主指标以后,要结合业务流程,梳理出过程指标。有了过程指标,才能解释主指标为什么低,为什么高。 还拿销售运营举例。销售运营的工作,是叠加在销售正常的工作之上的,因此有两个业务流程要梳理:
销售运营的动作,大体上可以分成三部分:
这里有个常见的误区,就是很多同学在梳理指标体系的时候,只关注用户行为,不关注业务动作。比如梳理销售指标,就简单地:销售额=业务员人数*有成交比例*人均成交金额,就拉倒完事。 至于有啥奖惩措施,有啥规范制度,一概不知。这样会导致指标体系只能展示结果,不能解释原因,也没法对比分析。最后对着人数、比例、人均金额三个指标狂抓脑袋:为啥它就涨了呢?为啥它就跌了呢?(如下图) 四、确认数据采集 数据记录是保障。业务流程数字化程度不高,没有数据记录,一切免谈。比如销售运营指标体系;如果想解读销售业绩,就得掌握销售过程,得先知道销售干了啥,没干啥;如果想诊断销售能力,就得掌握销售个人画像,得先知道销售有啥经验、啥背景;如果想分析运营动作有效性,就得记录每个动作上线时间,作用在哪些人身上。 如果以上统统没有,只有一张成交订单和订单上的销售个人编号。那就真的没啥好分析的了。最后的数据就只有:销售额=业务员人数*有成交比例*人均成交金额。基于这么点可怜的数据,可以做一些简单的、粗线条的分析,比如:
当然,因为缺少细节,所以这些分析很容易被人质疑。没有数据,分析什么呢!这一点一定要牢牢记在心里。在各种场合,努力推动数字化进程,努力提高业务部门对采集数据的重视(而不是提高业务部门对数据分析成果的期望),才是数据分析师们自救法宝。至于那种大吹特吹:“我有神威无敌大将军算法,代码一跑上知天下知地中间知空气”的主,你就跟他划清界限,让他独自面对销售的质疑,死几次他就知道改了。 五、更多的场景 不止销售运营,但凡数据想落地到具体业务中,都得经历这个过程。 比如商品管理场景,得先知道:
作者:“接地气的陈老师”,微信公众号:接地气的陈老师,版权归原作者所有,未经允许不得转载。此文观点仅代表作者本人,热传网平台仅提供信息存储空间服务。 来源:https://arc.obus.cn/forum.php?mod=viewthread&tid=75&extra=page%3D1 免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作! 文章来源:“接地气的陈老师”,未经允许不得转载。 文章代表作者观点,版权归原作者所有,热传平台仅提供信息存储空间服务。 |
2024-09-29
2024-09-26
2024-09-26
2024-09-24
2024-09-24
2024-09-24
2024-09-24
2024-09-22